
Simulator
Krishna Deepak

1

ETH Zurich

Contents of the Talk
● Simulator

○ Implementation
○ What can be done with it?
○ Issues

● Topology Generator
○ BRITE

● Attack on SCION
○ The attack
○ Possible defenses

2

SCION Simulator
● Simulates functionalities of SCION elements (BS, CS,

PS, ER)
○ Beacon Propagation at BS, Packet Forwarding at

Routers, IFID propagation etc
● Implemented as a Discrete Event Simulator

○ Functionalities of the SCION elements are modeled
as events

○ Each event is associated with a timestamp
○ Events are scheduled using a priority queue

3

Implementation Challenges
● Single-threaded vs Multi-threaded

○ Simulator is implemented using a single-thread
○ Actual SCION implementation is multi-threaded
○ Simplified implementation

■ No redundancy of servers (i.e., single beacon
server + eliminated zookeeper)

● Need to map recv() calls of scion elements to a special -
sim_recv() function as we do not have any sockets
involved

4

Implementation Challenges
● Functions which are to be called repeatedly(e.g.,

beacon propagation) need to be called recursively so as
to ‘schedule’ the next event at a later time

● Many crypto operations are removed from simulator as
they were the causes of bottlenecks
○ Verifying MAC in OF’s
○ Verifying beacons and TRC’s

5

● All the infrastructure elements have a simulator version
of them in which we override any function to be modified

● Real time vs Virtual time
○ Simulator runs on a virtual time scale
○ Hence, all the timestamps(time.time() calls) in the

actual SCION code are replaced with simulator’s
current time(virtual time)

Implementation Challenges

6

What can be done with simulator?
● Code Debugging

○ Can schedule specific events and see if code runs
the way we want it to

○ Ideal for testing corner cases

● Functionality Verification at Large scale
○ Run the codebase on large topologies
○ Use Topology generator to generate large topologies

7

Issues with simulator
● Changes to SCION Codebase requires manual change

in the Simulator

● Inherent Scalability Limitations
○ E.g. A ping pong application on a topology of 6 ISD’s

and approximately 500 nodes takes almost 70 sec to
complete

8

SCION Topology Generator

9

● BRITE is an Internet topology generator
● It can be used for generating flat AS-level topology, flat

router-level topology or a mixed one
● Many internet models such as Barabasi-Albert Model,

Waxman model are incorporated in it so that the
topology is indeed Internet-like

● Although BRITE is no longer supported, it is quite good
for our purposes

BRITE

10

http://www.cs.bu.edu/brite/
http://www.cs.bu.edu/brite/

● Convert each Brite file into a different ISD
● Challenges

○ No notion of ISD’s
○ No business relationship among the edges
○ Coming up with ways to interconnect core AD’s in

the ISD’s

BRITE to SCION

11

BRITE to SCION
● Steps in the conversion

○ Each brite file specified is converted to an ISD
○ Core AD’s are identified and all edges are labelled

into one of the four options - ‘Routing’, ‘Peer’,
‘Parent’, ‘Child’

○ The ISD core’s are then interconnected manually
using min and max degree(can be specified at
command line)

12

Generating an ISD
● From the given brite file, some AD’s with high degree

are chosen to be the core AD’s for an ISD
● Breadth-first Search is performed starting from these

core AD’s to mark Parent-Child relations among the
edges

● Any edge between two nodes which are on the same
level(while doing BFS) is considered a Peer edge

● Then, we interconnect ISD’s using the min and max
degrees specified

13

● We generate a model ISD graph in which we consider
each ISD to be a node. Using this model graph, we will
generate the actual inter-ISD routing edges later

● Steps involved
○ Connect all ISD’s in a cyclic fashion to ensure that

they remain connected
○ Using min degree parameter, add edges so that all

nodes have at least this degree

Interconnecting ISDs

14

Continued..

● Steps continued
○ Now, edges are added only between a chosen set of

ISD’s to make them denser and Internet-like
○ Edges are added randomly between these chosen

ISD’s, ensuring the max degree specified is not
exceeded for any ISD

● Using the model graph generated, routing edges are
added between randomly chosen core AD’s from the
two ISD’s to be connected to generate the final graph 15

Command line options
● The min and max degree of interconnections can be

adjusted using command line options
● Command line options are also available to convert all

files in a specified directory (or) to specify each file to be
converted separately

16

An attack on SCION

17

The problem
● MAC size in an Opaque Field(OF) can be changed by

the AD
● In the worst case, we assume that all AD’s set this to 24

bits - 3 bytes
● Attacker can juggle with the opaque field and perform a

brute force attack with all possible MAC’s
● Using this fact, various attacks might be possible

depending on the goal of the attack

18

Goal of the attack
● Attacker wants to change the timestamp of a down-path

so that he can use it for a longer period
● Timestamp field - TS

○ Present in Special Opaque field(SOF) which is
different for an up-path and down path

○ The first router on the down path updates the EXP
Time field in SCION packet header with the down
path timestamp from SOF

● The attacker needs to change the SOF of down-path
19

Preliminaries

20

● Each edge router in an AD computes the MAC key
using TS and a key local to the AD

● Using this key, MAC field is computed in the following
way

 MAC key (or) KMAC = F(TS, KAD)

 MAC field = MACKMAC(ingress, egress, prev. Opaque field)

Attack Setting

CoreCore

SOF: TS changed

 Victim

ISD 2ISD 1

 Attacker

 Up-path Down-path

21

changed OF

changed OF

changed OF

unchanged OF

unchanged OF

unchanged OF

The attack
● Change of TS in down-path’s SOF means that the

attacker will have to change all the opaque fields on
down-path

● The attack would involve many sub-attacks targeting the
AD’s in down-path in a top to bottom fashion, as each
OF depends on previous OF

● In each sub-attack, the attacker will have to find a web
server in the AD to be attacked and send brute-forced
packets to it

22

Obtaining a new Opaque field

23

Core-ISD 2

 E

 C

 D

 B

A

OFC: 4,5,??

2

3

4

5

6

7

OFB: 2,3,MACNew(2,3,OFA)

8

OFD: 6,7,??

OFE: 8,0,??

1 OFA: 0,1,MACNew(0,1)

SOF: TS changed

Obtaining C’s Opaque field

24

Core-ISD 2

 E

 C

 D

 B

A

OFC: 4,5,??

2

3

4

5

6

7

OFB: 2,3,MACNew(2,3,OFA)

8

OFD: 6,0,??

1 OFA: 0,1,MACNew(0,1)

● To get the OFC, we cannot send packets to
a web server in AD C as OFC will then be
(4,0,MAC) i.e., we have zero at the egress
as this is the endpoint.

● So, the attack has to be on AD D(its
immediate downstream neighbor) so that
AD C is now an intermediate AD and
OFC is (4,5,MAC)

The packets are being
sent to AD D. Opaque
fields corresponding to
AD C and AD D are to
be bruteforced

SOF: TS changed

Attack complexity

25

● For a MAC size of 24 bits the attack size is 224*224 = 248

● The same attack can be repeated to obtain the rest of
opaque fields in the down path

● It can be observed that once such an attack is
performed, the same opaque fields can be used for
duplicating some other down paths

● Increase the complexity of the attack by using the one
byte at the start and end of an up path/down path(e.g.,
egress field at end of down path) to extend the MAC
size

● This will increase the attack complexity to 256 as
obtaining some OF’s involves brute forcing more bits
○ Specifically, getting the second opaque field and the

opaque field of the AD just above the end point will
have 256 complexity

Possible defenses

26

Attack using shortcut paths
● Till now, we have shown the attacker to be in a different

ISD but this is not necessary
● Similar attack is possible by an attacker in the victim’s

ISD using shortcut paths
○ Even in case of a shortcut path, we still have Time

stamp field in SOF at the start of down path which is
changed by the attacker

27

Thank You!!
Special thanks to Tae-Ho Lee, Samuel Hitz,

Adrian Perrig

28

